Aviation - INTRODUCTION
EARLY HISTORY
THE 19TH CENTURY
KITTY HAWK AND AFTER
HISTORIC HEADLINES
WORLD WAR I AND AFTER
WORLD WAR II
AFTER WORLD WAR II
RECENT DEVELOPMENTS
Airplane
HOW AN AIRPLANE FLIES
SUPERSONIC FLIGHT
AIRPLANE STRUCTURE
Wings
Tail Assembly
Landing Gear
Control Components
Instruments
PROPULSION
TYPES OF AIRPLANES
Land Planes
Carrier-Based Aircraft
Seaplanes
Amphibians
Vertical Takeoff and Landing Airplanes
Short Takeoff and Landing Airplanes
Space Shuttle
CLASSES OF AIRPLANES
Commercial Airplanes
Military Airplanes
General-Aviation Aircraft
HISTORY
The First Airplane Flight
Early Military and Public Interest
Planes of World War I
Development of Commercial Aviation
Aircraft Developments of World War II
The Jumbo Jet Era

Control Components




Plane Crash - Control Components

An airplane is capable of three types of motion that revolve around three separate axes. The plane may fly steadily in one direction and at one altitude-or it may turn, climb, or descend. An airplane may roll, banking its wings either left or right, about the longitudinal axis, which runs the length of the craft.

The airplane may yaw its nose either left or right about the vertical axis, which runs straight down through the middle of the airplane. Finally, a plane may pitch its nose up or down, moving about its lateral axis, which may be thought of as a straight line running from wingtip to wingtip. (Plane Crash - Control Components)

An airplane relies on the movement of air across its wings for lift, and it makes use of this same airflow to move in any way about the three axes. To do so, the pilot will manipulate controls in the cockpit that direct control surfaces on the wings and tail to move into the airstream. The airplane will yaw, pitch, or roll, depending on which control surfaces or combination of surfaces are moved, or deflected, by the pilot. (Plane Crash - Control Components)

In order to bank and begin a turn, a conventional airplane will deflect control surfaces on the trailing edge of the wings known as ailerons. In order to bank left, the left aileron is lifted up into the airstream over the left wing, creating a small amount of drag and decreasing the lift produced by that wing. At the same time, the right aileron is pushed down into the airstream, thereby increasing slightly the lift produced by the right wing. The right wing then comes up, the left wing goes down, and the airplane banks to the left. To bank to the right, the ailerons are moved in exactly the opposite fashion. (Plane Crash - Control Components)

In order to yaw, or turn the airplane’s nose left or right, the pilot must press upon rudder pedals on the floor of the cockpit. Push down on the left pedal, and the rudder at the trailing edge of the vertical stabilizer moves to the left. As in a boat, the left rudder moves the nose of the plane to the left. A push on the right pedal causes the airplane to yaw to the right. (Plane Crash - Control Components)

In order to pitch the nose up or down, the pilot usually pulls or pushes on a control wheel or stick, thereby moving the elevators at the trailing edge of the horizontal stabilizer. Pulling back on the wheel deflects the elevators upward into the airstream, pushing the tail down and the nose up. Pushing forward on the wheel causes the elevators to drop down, lifting the tail and forcing the nose down. (Plane Crash - Control Components)

Airplanes that are more complex also have a set of secondary control surfaces that may include devices such as flaps, slats, trim tabs, spoilers, and speed brakes. Flaps and slats are generally used during takeoff and landing to increase the amount of lift produced by the wing at low speeds. Flaps usually droop down from the trailing edge of the wing, although some jets have leading-edge flaps as well. On some airplanes, they also can be extended back beyond the normal trailing edge of the wing to increase the surface area of the wing as well as change its shape. Leading-edge slats usually extend from the front of the wing at low speeds to change the way the air flows over the wing, thereby increasing lift. Flaps also often serve to increase drag and slow the approach of a landing airplane. (Plane Crash - Control Components)

Trim tabs are miniature control surfaces incorporated into larger control surfaces. For example, an aileron tab acts like a miniature aileron within the larger aileron. These kinds of controls are used to adjust more precisely the flight path of an airplane that may be slightly out of balance or alignment. Elevator trim tabs are usually used to help set the pitch attitude (the angle of the airplane in relation to the Earth) for a given speed through the air. On some airplanes, the entire horizontal stabilizer moves in small increments to serve the same function as a trim tab. (Plane Crash - Control Components)



Plane Crash - Control Components