Home Health and Medical Education
Information on AIDS/HIV PREVALENCE North America Aids in Africa Europe Developing Nations CAUSE HOW HIV INFECTION SPREADS Sex with an Infected Person Contact with Infected Blood Mother-to-Child Transmission Misperceptions About HIV Transmission SYMPTOMS Opportunistic Infections Symptoms in Children DETECTING AND MONITORING HIV INFECTION DIAGNOSING AIDS TREATMENT Antiretroviral Therapies Drug Resistance Post-exposure Prevention Development of New Drugs Treatment of Opportunistic Infections Support Mechanisms PREVENTION HISTORY Origin of the Virus Disease First Identified Defining the Illness SOCIAL PERSPECTIVES Testing AIDS Drugs and Vaccines Social Stigma and Discrimination
Abortion Alternative Medicine Alzheimer Disease Cancer Cancer (Tumor) Disease Coronary Heart Disease Diabetes Mellitus Herpes Medicine Mental illness Tuberculosis
University Medical Education Programs Zoo Animals Health and Care


 Since HIV was first identified as the cause of AIDS in 1983, a variety of tests have been developed that help diagnose HIV infection as well as determine how far the infection has progressed. Other tests can be used to screen donated blood, blood products, and body organs for the presence of HIV.

 Doctors determine if HIV is present in the body by identifying HIV antibodies, specialized proteins created by the immune system to destroy HIV. The presence of the antibodies indicates HIV infection because these antibodies form in the body only when HIV is present. HIV antibodies form anywhere from five weeks to three months after HIV infection occurs, depending upon the individual’s immune system. The antibodies are produced continually throughout the course of the infection

 The standard test to detect HIV antibodies in the blood is the enzyme-linked immunosorbent assay (ELISA). In this test, a blood sample is mixed with proteins from HIV. If the blood contains HIV antibodies, they attach to the HIV proteins, producing a telltale color change in the mixture. This test is highly reliable when performed two to three months after infection with HIV. The test is less reliable when used in the very early stage of HIV infection, before detectable levels of antibodies have had a chance to form. Doctors routinely confirm a positive result from an ELISA test by using the Western Blot test, which can detect lower levels of HIV antibodies. In this test a blood sample is applied to a paper strip containing HIV proteins. If HIV antibodies are present in the blood, they bind to the HIV proteins, producing a color change on the paper. The combination of the ELISA and the Western Blot test is more than 99.9 percent accurate in detecting HIV infection within 12 weeks following exposure.

 Once tests confirm an HIV infection, doctors monitor the health of the infected person’s immune system by periodically measuring CD4 cell counts in the blood. The progressive loss of CD4 cells corresponds to a worsening of the disease as the immune system becomes increasingly impaired. Doctors also measure the viral load—the amount of the virus in the blood—using polymerase chain reaction (PCR) technology. PCR tests measure the level of viral ribonucleic acid (RNA), a type of nucleic acid, in blood to determine the rate of HIV growth in an infected person. Knowing the viral load helps doctors estimate an infected person’s survival time. For example, studies show that without treatment, the average survival time for people with an HIV viral load greater than 30,000 per microliter of blood is 4.4 years, while those with a viral load below 10,000 per microliter of blood live for an average of ten years.

 A modified ELISA test that detects p24 antigen, a protein produced by HIV, can determine if specific drug treatments are having a positive effect on a patient. Blood banks, plasma centers, clinical laboratories, private clinics, and public health departments also use this p24 antigen test to screen for the presence of HIV in blood, blood components, and organs before they are used in medical procedures. ©2017.